& IEEE

IEEE P2418.1 F2F Meeting

William J. Miller

Extasis Integration Server

Welcome to the extas.is Integration Server. It helps you and your things find each
other and communicate securely and interoperable. Owners can control who can
access their devices and do what with them. Digital Smart Contracts incentivize
owners to publish their devices and their data, providing a return on investment
based on device usage by third parties.

ecstasies
— (Spanish) Extas.is is a feeling of great happiness.

The extas.is Integration Server is sponsored by The Internet Foundation in Sweden,
in order to help the development of standards that facilitate and incentivize the
development of Smart City infrastructure and solutions. The work is done in
conjunction with efforts within the IEEE 1451-99 - Standard for Harmonization of
Internet of Things (loT) Devices and Systems and the IEEE DASH - Devices and
Systems Harmonization Working Group. Interfaces are Open Source, and available
at the GitLab repository IEEE-SA XMPP Interface descriptions for the Internet of
Things. The results will be presented in a series of lectures during Q3 and Q4 of 2018
at GOTO10. Register your interest in participating by providing your contact details in
the feedback form. You can request an account on extas.is if you want to try the
prinAc\:Ii:ﬂI?(s outlined here. To automate the creation of accounts, you need to request
an ey.

How does it work?

SO
Interoperability

Global Scalability

Topology Independence

AMuthorization

‘ Decision Support

@ Edge Computing Contracts
Marketplace of Things and Data
Economic Feedback
Incentives to develop the @

IEEE loT Harmonization

* The extas.is Integration Server is based on the
results of the IEEE loT Harmonization effort. The
goal is to create open standards that facilitate
the interoperable communication of things
across the Internet, in a secure manner.
Interfaces and descriptions are made available
at the [IEEE-SA XMPP loT Interfaces repository.
During Q3-Q4 2018, this set of interfaces will be
expanded with interfaces for contracts and
economic feedback models.

Federation

« The infrastructure is federated by design. This means
that you can freely extend the network by setting up your
own integration servers on your own domains using your
own domain names. Devices connected to any
iIntegration server on the Internet can communicate with
any device connected to any other integration server on
the Internet, as long as they are authorized to do so.
This is possible, since the integration servers cooperate
and exchange messages between themselves, in real
time, just like mail servers do, but faster. For this reason,
Integration Servers are also known as message brokers.
They broker messages between entities on the Internet.

Topology Independence

* Entities connect outward to their assigned
message broker. Never do things need to
establish different connections depending on
who they communicate with. All messages sent
and received are passed over the same
connection. Never do entities need to accept
Incoming connections. This allows things and
users to reside behind firewalls. Since message
brokers interconnect and exchange messages,
things and users can reside behind different
firewalls, connect to different message brokers,
and still communicate with each other.

Global Scalability

* The federated nature of the infrastructure also
provides a natural way for it to grow organically.
It is not necessary to create huge complex data
centres that host services for everyone at once.
Instead, anyone can host their own set of
message brokers, without affecting the network
performance of others needlessly. At the same
time, this is done without restricting who entities
can communicate with. Message brokers
collaborate to form a global network of
iInterconnected things.

Resilience

* Federation is also a great tool for creating
resilient networks, as you divide the risks
across the network. The failure of a
message broker only affects a small
portion of the entire network, just as a
router only affects a small part of the
larger interconnected network.

Open Standards

« Basing the infrastructure on Open Standards
has several advantages: Infrastructure
components become replaceable and
exchangeable. It also removes the need for the
development of bespoke or proprietary back-end
software to make entities interconnect and
communicate. It becomes possible to create
Smart City applications without the requirement
to develop server software or to rely on server-
storage of sensitive sensor data.

Open Standards

 |EEE loT Harmonization is based on the XMPP
protocol, which is an open standard,
standardized by the Internet Engineering Task
Force, IETF in RFC 6120, RFC 6121 and RFC
6122. XMPP is federated, open, extensible,
secure, proven and robust. It is XMPP that
defines the basic operation of message brokers.
The XMPP Standards Foundation, XSF publish
XMPP extensions for different purposes. The
IEEE loT Harmonization effort bases its work on
these standards, as well as interfaces published
in the [IEEE-SA XMPP loT Interfaces repository.

Protocol Bridging

IEEE IoT Harmonization defines interfaces for concentrators that
collect, or concentrate, a set of devices behind a single
communication endpoint in the network. This can be used for
embedding devices (or nodes) in a single physical device, such as a
Programmable Logic Controller (PLC). It can also be used to bridge
protocols in real time or connect large back-end systems to the
network. Nodes in a concentrator behave just as any other thing
connected to the infrastructure, and therefore also benefit from its
fea(;tures such as discovery, decision support, ownership, contracts,
and so on.

If you are interested in acquiring protocol gateways between XMPP
and any other protocol, such as M-Bus, Modbus, Bluetooth, MQTT,
LWM2M, etc.,.

Interoperability

* For an entity to be able to connect to a message broker,
It needs an account on that broker. The account name,
together with the domain name of the broker, becomes a
global identity for the entity. The identity, or address
takes the form of what looks very much like an e-mail
address: account@domain, also called a Bare Jabber
ID, or Bare JID. An entity connected to this Integration
Server using an account named my.thing would have a
global address of my.thing@extas.is. Once connected,
the message broker provides the entity with a random
resource string. Together with the Bare JID, this forms a
Full JID, in the form my.thing@extas.is/resource.

Interoperability

* For concentrators, the Bare JID points to
the concentrator itself. A thing that resides
In, or behind, a concentrator, is further
identified using a Node ID, and optionally
by a Source ID and Partition as well.
Nodes can reside in sources, which may,
or may not be partitioned into segments.
The quadruple (Bare JID, Node ID, Source
ID, Partition) is globally unique. Node ID,
Source |ID and Partition are optional

Global Identities

* For an entity to be able to connect to a message broker,
It needs an account on that broker. The account name,
together with the domain name of the broker, becomes a
global identity for the entity. The identity, or address
takes the form of what looks very much like an e-mail
address: account domain, also called a Bare Jabber ID,
or Bare JID. An entity connected to this Integration
Server using an account named my.thing would have a
global address of my.thing@extas.is. Once connected,
the message broker provides the entity with a random
resource string. Together with the Bare JID, this forms a
Full JID, in the form my.thing@extas.is/resource.

Global Identities

* For concentrators, the Bare JID points to
the concentrator itself. A thing that resides
In, or behind, a concentrator, is further
identified using a Node ID, and optionally
by a Source ID and Partition as well.
Nodes can reside in sources, which may,
or may not be partitioned into segments.
The quadruple (Bare JID, Node ID, Source
ID, Partition) is globally unique. Node ID,
Source |ID and Partition are optional

Authentication

* Authentication in distributed environments
such as a Smart City is typically difficult.
Does everyone need to have access to the
credentials of everyone else that it is to be
able to communicate with?

Authentication

In XMPP, this problem is delegated to the brokers. One important
task they have is to authenticate all clients connecting to them. You
cannot send messages to others in the network before the message
broker has successfully authenticated your identity. Brokers also
annotate all messages forwarded in the network with the address of
the source of the message. This identity is very difficult to spoof, as
the brokers also mutually authenticate each other and reject
messages not annotated with a source address corresponding to the
domain of the emitting broker. This allows the receivers of
messages to estimate the validity of a received message simply
based on the trust it places on the immediate broker, which is only

one.

Authentication

« Simply put: The infrastructure
authenticates all participants, and all
participants are informed about the
authenticated identities of everyone
sending them messages. This makes it
very easy to make good security decisions

In a distributed environment such as a
Smart City

Consent

In order to be able to communicate efficiently with another entity in
the network, you need its Full JID, not only its Bare JID. The Full JID
Is transmitted to approved parties when the corresponding entity
reports its presence. This is done, among other things, when the
entity comes online or goes offline. The Bare JID can be used to
request a presence subscription from the entity, which will allow the
Full JID to be known if the entity consents to the request. If the
corresponding entity does so, its message broker registers this
event, and forwards future presence information to the party making
the request. The entity can withdraw the consent at any time,

making sure the corresponding party is no longer informed about the
Full JID of the entity. When reconnecting, receiving a new resource,
the party having lost the presence subscription, will not be able to
communicate efficiently with the entity any longer.

Authorization

Authorization

XMPP includes several authorization mechanisms that
help protect entities in the network:

Only properly authenticated clients are authorized to
send messages to the network.

Only mutually authenticated brokers can participate in
the federated network.

Brokers can only forward messages originating in their
authenticated domain.

Information Queries require the use of Full JIDs, whose
reception require mutual consent.

IEEE loT Harmonization adds an authorization layer of
decision support to this list.

Secure Registration

« To automate the installation and configuration of
huge quantities of devices into the network,
along the principles of zero-configuration
networking for the operator, an automatic
registration procedure is available. To prohibit
malicious bots from being able to create
identities fraudulently, requests must be
identified using an AP/ key and signed using a
private key. APl keys can be limited with regards
to the number of accounts that can be created
using it.

* On this broker, you can request an API| key

Discovery

During production, the manufacturer is only aware
of the conceptual identity of the devices being
manufactured. This identity can include information
about serial number, make and model of device,
information about manufacturer, etc., as well as a
secret key. Typically, the manufacturer and the
device are unaware of the network identity the
device will have.

After installation and during configuration, the
device will find its broker, either through pre-
configuration, or through information available in the
network, create its network identity. The device then
registers itself with a Thing Registry available on the
message broker. This registration contains the
conceptual identity of the device, and its new
network identity.

The conceptual identity, known at the time of
production, is transferred out-of-band to the owner
of the device. This can be done using a QR-code
(for instance) on a sticker or sharing a iotdisco URI.
The owner sends a claim to the same Thing
Registry. The registry matches registrations and
claims, and if they match, pairs the thing with its
owner, and informs each one about the network
identity of the other.

Ownership

Once each thing knows the network identity of its owner, it becomes
possible to define ownership, not only of the thing, but also of the data it
generates. Typically, in cloud-based solutions, data ownership is
challenging, if not undefined.

Mimicking how ownership of everyday physical objects is defined, or
er]lforced, the infrastructure helps define a method of enforcing ownership of
information:

Local processing of information, together with Ubiquitous Encryption
protects it behind lock and key.

Thanks to the strong support for authorization, access to information is
limited to only trusted parties.

Access is monitored, especially if data is made available through contracts.
Ownership of information can be demonstrated through annotations in the
Thing Reqistry.

Ownership of information is enforced by utilising the decision support
provided by the infrastructure, together with edge computing principles,
instead of relying on centralized processing in the cloud, except in cases
when required or in accordance with the wishes of the owner.

Decision Support

The infrastructure provides your things with decision support,
helping them make security decisions in real time. This provisioning
capability allows owners to control who can communicate with their
devices and do what with them. It also reduces the responsibility of
the manufacturer, who cannot possibly know beforehand for what
purpose each device will be used.

When something new happens to a thing, to which it does not know
how to react, it can ask the provisioning service in the broker what to
do. DeS|gned on the principles of data protection by default, the
provisioning service will reject the petition if it does not know how to
solve it. But it knows who its owner is, and therefore also, who
should know. An asynchronous message is sent to the owner, which
the owner can respond to when time is available. Once responded
to, the provisioning service learns. The next time the thing asks a
related question, the provisioning server knows how to respond. The
service has been provisioned in accordance of the will of the owner,
and with no impact on the infrastructure operator.

Contracts

* Owners can automate decision support by uploading
digital contracts for their things. These contracts stipulate
requirements that must be met in order to gain access to
their devices, under what conditions access can be
given, for how long and how often. Identified third parties
wanting access to devices can accept their contracts and
are automatically granted access in accordance with the
contracts. Things report usage to the infrastructure,
which uses this usage information to monitor compliance
with the contract. This usage information is also used to
create billing information or the Markeiplace of Things
and Data.

Ubiquitous Encryption

« Ubiquitous Encryption is a policy that
requires that all client & broker
connections (c2s), and all broker < broker
(s2s) are encrypted and properly
authenticated. This is one of many
features that provide for added security. In
cases where very sensitive information is
communicated, End-to-end encryption
(E2E) and/or Peer-to-Peer (P2P)
communication can be used.

Security

The extas.is Integration Server helps you maintain a high level of data
protection by design and by default for your Smart City applications. It does
so by providing:

Strong global identities that identify all senders of messages in the network.
While anonymous access might protect a whistle blower (or a criminal),
strong authenticated identities protect the information owner.

Authentication of all participants in the network.

Authorization based on consent is required for full access to an entity. This
consent can be verified, and as easily withdrawn, as it was given.

Federation provides for resilience and scalability. It allows you to divide the
risk across domains.

Ownership and decision support provide long-term security for things that
are not operated by humans.

Ubiquitous Encryption helps maintain the confidentiality of the information
communicated.

Edge Computing

Edge computing is the paradigm that information should be
processed as close to the edge, or the source, as possible. It is the
opposite of centralized (or cloud) processing. The extas.is
Integration Server helps you realize the Edge Computing paradigm,
by not participating actively in the processing of sensor data.
extas.is only acts as a message broker, and furthermore provides
registry and decision support services for things. Sensor data is
never collected by the broker. If an entity wants access to the data, it
needs to request it from the thing directly, helped by the
infrastructure to do so. If an infrastructure component should try to
collect such information from things integrating with extas.is, their
corresponding owners would be alerted, and data collection would
only be possible in instances where owners consent.

Privacy

extas.is helps applications respect the privacy of
any data subjects related to any sensitive
information measured by devices connected to
the broker. This is done on an infrastructure
level, in several ways:

Data protection principles are implemented by
design and by default.

Access to data can only be achieved through
consent from its owner.

Any consent given can be as easily withdrawn,
as it was given.

Marketplace of Things and Data

* The law of supply and demand requires you to
limit access to a resource for it to be valuable,
l.e. having a price above zero. An unlimited
resource has no price, or a price of zero. While
the resource might have non-monetary values,
such as emotional, philosophical or spiritual
values, for it to have a monetary value, access
to it must be restricted. This does not
automatically mean any restricted resource has
a value. But all valuable resources are restricted.
And so, it is for information too: Only restricted
information can be valuable.

Marketplace of Things and Data

* For this purpose, extas.is provides a
marketplace of things and data, and helps
owners restrict access to their things and their
data. Owners publish their things in the Thing
Regqistry where others can discover them.
Through contracts, owners define the conditions
required of acquiring access to their things.
Accepting these contracts is done using a digital
signature; a deal is made. The plurality of
offerings available in the registry forms a
marketplace of things and their data.

Economic Feedback

* The integration server provides billing
information to the infrastructure operator, based
on signed contracts and reported usage. The
operator can use this information to bill the
parties participating in the network, in
accordance with their usage. A part of these
earnings is used to reimburse the owners whose
devices have been used. This creates an
economic feedback, helping the owners to get a
return on their investment.

Incentives to develop the
Smart City

The original question being solved by the proposed infrastructure is as
follows: What incentive does an owner of a thing have for allowing others to
connect to it and use it in their systems? In the vision of a Smart City,
there’s ubiquitous access to things and services in all niches of society. But
what incentives are there for this to occur?

In a traditional loT system there are few. Allowing third parties access to
your things will only put more load on your devices, decreasing the
performance of your system, while a competitor can publish a similar
service as yours without having to invest in hardware. For this reason, most
loT solutions are closed systems prohibiting integration with their thlngs
directly, permitting access at most through controlled back-end server
platforms using proprietary APls. Integrations are therefore limited.

Through the proposed infrastructure, there is a clear economic incentive to
allow others access to your things. If you provide the type of device for
which others are willing to pay to get access to, you might not only get a
return on your investment, but also turn a profit. It will become profitable in
its own right, to provide access to devices and their data and services. The
marketplace will provide a platform for competition, which will accelerate
development of the Smart City.

IPDX.NET

Internet Protocol Data eXchange NETwork

« Safe loT data sharing
« EU GDPR Compliant!

IPDX.NET

» |[EEE GitLab Open Source Repository:
« https://gitlab.com/IEEE-SA/XMPPIl/loT
« Extasis Integration Server (EIS)

* https://lextas.is

 IPDX.NET IoT Broker meets the GDPR
(Global Data Protection Requlation)
Compliance

loT Broker

The loT Broker is a message broker that helps ensure things connected to the
Iﬂterget has a secure, open and interoperable communication environment. It does
this by:

Using XMPP, providing things with a distributed, federated communication network
that solves basic authentication and authorization. XMPP is very capable, and
provides a standardized middleware layer for internet applications that require real-
time communication support. Using XMPP replaces the need for customized
middleware with replaceable components.

Providing a Thing Registry for things to be securely claimed by their owners. The
Thing Registry matches ownership claims to unclaimed devices, and informs
matching pairs about the network identities of each other. Once claimed, a thing can
be made public. They are allowed to publish their existence and capabilities, allowing
consumers to find suitable things based on their capabilities.

Providing Decision support for things in a changing environment. This allows
owners to determine who can access their things, what fields they are allowed to read
and what parameters they are allowed to control.

Securing Account Creation for batches of things, to protect against malicious use
and unwanted bots.

Using this loT Broker allows you to create open, yet secure and interoperable
applications for the Internet of Things.

Why XMPP?

The reasons for choosing XMPP for an loT backbone are many. Here are some:

XMPP is standardized by the Internet Engineering Task Force (IETF) in REC 6120, RFC 6121 and RFEC 6122.
XMPP is encrypted.

XMPP is battle tested and robust, with 19 years of operation.

XMPP is extensible. Anyone can extend it without being afraid the extensions will collide with other extensions.
XMPP has a series of standardized extensions, managed by the XMPP Standards Foundations - XSF.

XMPP is federated, meaning anyone can set up their own XMPP domain, extending the network without limiting
performance of the rest of the network. Federation is the key to global scalability.

There’s a lot of available software for XMPP, including clients, servers and libraries in most languages.
.XIJ:/II:fP supports both Human-to-Human (H2H), Human-to-Machine (H2M) and Machine-to-Machine (M2M)
interfaces.
XMPP supports most important communication patterns, including:

— Asynchronous messaging

— Request/Respond

— Publish/Subscribe

— Multicast

— Event subscription
XMPP is not sensitive to network topology in the same way as HTTP and CoAP.

XMPP is secure, in contrast to protocols such as MQTT which due to intrinsic vulnerabilities can never be made
secure in an open and interoperable environment such as the Internet.

XMPP includes a global, distributed identity model, providing actors with their own unique global and authenticated
identity. This makes distributed transactions and security decisions easier. Everybody knows the identity of each
other.

XEP support by the loT Broker

e loT Broker is an XMPP server dedicated to loT-related applications. It has support for a specific set of protocols to
achieve this. The following table lists what server-specific protocols are supported by
the broker. (All client-side protocols are by their very nature automatically supported.)

ProtocolTitleRFC-6120Extensible Messaging and Presence Protocol (XMPP):
CoreRFC-6121Extensible Messaging and Presence Protocol (XMPP): Instant
Messaging and PresenceRFC-7395An Extensible Messaging and Presence Protocol
(XMPP) Sub protocol for WebSocketRFC-7590Use of Transport Layer Security (TLS)
in the Extensible Messaging and Presence Protocol (XMPP)RFC-7622Extensible
Messaging and Presence Protocol (XMPP): Address FormatXEP-0008IQ-Based
AvatarsXEP-0030Service DiscoveryXEP-0049Private XML StorageXEP-0054vcard-
tempXEP-0059Result Set ManagementXEP-0060Publish-Subscribe XEP-
0065SOCKSS5 BytestreamsXEP-0077In-Band RegistrationXEP-0092Software
VersionXEP-0115Entity CapabilitiesXEP-0124Bidirectional-streams Over
Synchronous HTTP (BOSH)XEP-0156Discovering Alternative XMPP Connection
MethodsXEP-0160Best Practices for Handling Offline MessagesXEP-0163Personal
Eventing ProtocolXEP-0178Best Practices for Use of SASL EXTERNAL with
CertificatesXEP-0185Dialback Key Generation and ValidationXEP-0191Blocking
CommandXEP-0199XMPP PingXEP-0202Entity TimeXEP-0203Delayed
DeliveryXEP-0206XMPP Over BOSHXEP-0220Server DialbackXEP-
0288Bidirectional Server-to-Server ConnectionsXEP-0324Internet of Things -
ProvisioningXEP-0337Event Logging over XMPPXEP-0347Internet of Things -
DiscoveryXEP-0348Signing FormsXEP-0363HTTP File Upload

Questions?

Thank youl!

