
IEEE P2418.1 F2F Meeting

William J. Miller



Extasis Integration Server

• Welcome to the extas.is Integration Server. It helps you and your things find each
other and communicate securely and interoperable. Owners can control who can
access their devices and do what with them. Digital Smart Contracts incentivize
owners to publish their devices and their data, providing a return on investment
based on device usage by third parties.

• ecstasies
– (Spanish) Extas.is is a feeling of great happiness.

• The extas.is Integration Server is sponsored by The Internet Foundation in Sweden,
in order to help the development of standards that facilitate and incentivize the
development of Smart City infrastructure and solutions. The work is done in
conjunction with efforts within the IEEE 1451-99 - Standard for Harmonization of
Internet of Things (IoT) Devices and Systems and the IEEE DASH - Devices and
Systems Harmonization Working Group. Interfaces are Open Source, and available
at the GitLab repository IEEE-SA XMPP Interface descriptions for the Internet of
Things. The results will be presented in a series of lectures during Q3 and Q4 of 2018
at GOTO10. Register your interest in participating by providing your contact details in
the feedback form. You can request an account on extas.is if you want to try the
principles outlined here. To automate the creation of accounts, you need to request
an API key.

•



How does it work?



IEEE IoT Harmonization

• The extas.is Integration Server is based on the
results of the IEEE IoT Harmonization effort. The
goal is to create open standards that facilitate
the interoperable communication of things
across the Internet, in a secure manner.
Interfaces and descriptions are made available
at the IEEE-SA XMPP IoT Interfaces repository.
During Q3-Q4 2018, this set of interfaces will be
expanded with interfaces for contracts and
economic feedback models.



Federation

• The infrastructure is federated by design. This means 
that you can freely extend the network by setting up your 
own integration servers on your own domains using your 
own domain names. Devices connected to any 
integration server on the Internet can communicate with 
any device connected to any other integration server on 
the Internet, as long as they are authorized to do so. 
This is possible, since the integration servers cooperate 
and exchange messages between themselves, in real 
time, just like mail servers do, but faster. For this reason, 
Integration Servers are also known as message brokers. 
They broker messages between entities on the Internet.



Topology Independence

• Entities connect outward to their assigned 
message broker. Never do things need to 
establish different connections depending on 
who they communicate with. All messages sent 
and received are passed over the same 
connection. Never do entities need to accept 
incoming connections. This allows things and 
users to reside behind firewalls. Since message 
brokers interconnect and exchange messages, 
things and users can reside behind different 
firewalls, connect to different message brokers, 
and still communicate with each other.



Global Scalability

• The federated nature of the infrastructure also 
provides a natural way for it to grow organically. 
It is not necessary to create huge complex data 
centres that host services for everyone at once. 
Instead, anyone can host their own set of 
message brokers, without affecting the network 
performance of others needlessly. At the same 
time, this is done without restricting who entities 
can communicate with. Message brokers 
collaborate to form a global network of 
interconnected things.



Resilience

• Federation is also a great tool for creating 
resilient networks, as you divide the risks 
across the network. The failure of a 
message broker only affects a small 
portion of the entire network, just as a 
router only affects a small part of the 
larger interconnected network.



Open Standards

• Basing the infrastructure on Open Standards
has several advantages: Infrastructure 
components become replaceable and 
exchangeable. It also removes the need for the 
development of bespoke or proprietary back-end 
software to make entities interconnect and 
communicate. It becomes possible to create 
Smart City applications without the requirement 
to develop server software or to rely on server-
storage of sensitive sensor data.



Open Standards

• IEEE IoT Harmonization is based on the XMPP
protocol, which is an open standard, 
standardized by the Internet Engineering Task 
Force, IETF in RFC 6120, RFC 6121 and RFC 
6122. XMPP is federated, open, extensible, 
secure, proven and robust. It is XMPP that 
defines the basic operation of message brokers. 
The XMPP Standards Foundation, XSF publish 
XMPP extensions for different purposes. The 
IEEE IoT Harmonization effort bases its work on 
these standards, as well as interfaces published 
in the IEEE-SA XMPP IoT Interfaces repository.



Protocol Bridging

• IEEE IoT Harmonization defines interfaces for concentrators that 
collect, or concentrate, a set of devices behind a single 
communication endpoint in the network. This can be used for 
embedding devices (or nodes) in a single physical device, such as a 
Programmable Logic Controller (PLC). It can also be used to bridge 
protocols in real time or connect large back-end systems to the 
network. Nodes in a concentrator behave just as any other thing 
connected to the infrastructure, and therefore also benefit from its 
features such as discovery, decision support, ownership, contracts, 
and so on.

• If you are interested in acquiring protocol gateways between XMPP 
and any other protocol, such as M-Bus, Modbus, Bluetooth, MQTT, 
LWM2M, etc.,.



Interoperability

• For an entity to be able to connect to a message broker, 
it needs an account on that broker. The account name, 
together with the domain name of the broker, becomes a 
global identity for the entity. The identity, or address
takes the form of what looks very much like an e-mail 
address: account@domain, also called a Bare Jabber 
ID, or Bare JID. An entity connected to this Integration 
Server using an account named my.thing would have a 
global address of my.thing@extas.is. Once connected, 
the message broker provides the entity with a random 
resource string. Together with the Bare JID, this forms a 
Full JID, in the form my.thing@extas.is/resource.



Interoperability

• For concentrators, the Bare JID points to 
the concentrator itself. A thing that resides 
in, or behind, a concentrator, is further 
identified using a Node ID, and optionally 
by a Source ID and Partition as well. 
Nodes can reside in sources, which may, 
or may not be partitioned into segments. 
The quadruple (Bare JID, Node ID, Source 
ID, Partition) is globally unique. Node ID, 
Source ID and Partition are optional



Global Identities

• For an entity to be able to connect to a message broker, 
it needs an account on that broker. The account name, 
together with the domain name of the broker, becomes a 
global identity for the entity. The identity, or address
takes the form of what looks very much like an e-mail 
address: account domain, also called a Bare Jabber ID, 
or Bare JID. An entity connected to this Integration 
Server using an account named my.thing would have a 
global address of my.thing@extas.is. Once connected, 
the message broker provides the entity with a random 
resource string. Together with the Bare JID, this forms a 
Full JID, in the form my.thing@extas.is/resource.



Global Identities

• For concentrators, the Bare JID points to 
the concentrator itself. A thing that resides 
in, or behind, a concentrator, is further 
identified using a Node ID, and optionally 
by a Source ID and Partition as well. 
Nodes can reside in sources, which may, 
or may not be partitioned into segments. 
The quadruple (Bare JID, Node ID, Source 
ID, Partition) is globally unique. Node ID, 
Source ID and Partition are optional



Authentication

• Authentication in distributed environments 
such as a Smart City is typically difficult. 
Does everyone need to have access to the 
credentials of everyone else that it is to be 
able to communicate with?



Authentication

• In XMPP, this problem is delegated to the brokers. One important
task they have is to authenticate all clients connecting to them. You 
cannot send messages to others in the network before the message
broker has successfully authenticated your identity. Brokers also 
annotate all messages forwarded in the network with the address of 
the source of the message. This identity is very difficult to spoof, as 
the brokers also mutually authenticate each other and reject 
messages not annotated with a source address corresponding to the 
domain of the emitting broker. This allows the receivers of 
messages to estimate the validity of a received message simply 
based on the trust it places on the immediate broker, which is only 
one.

• .



Authentication

• Simply put: The infrastructure 
authenticates all participants, and all 
participants are informed about the 
authenticated identities of everyone 
sending them messages. This makes it 
very easy to make good security decisions 
in a distributed environment such as a 
Smart City



Consent

• In order to be able to communicate efficiently with another entity in 
the network, you need its Full JID, not only its Bare JID. The Full JID
is transmitted to approved parties when the corresponding entity
reports its presence. This is done, among other things, when the 
entity comes online or goes offline. The Bare JID can be used to 
request a presence subscription from the entity, which will allow the 
Full JID to be known if the entity consents to the request. If the 
corresponding entity does so, its message broker registers this 
event, and forwards future presence information to the party making 
the request. The entity can withdraw the consent at any time, 
making sure the corresponding party is no longer informed about the 
Full JID of the entity. When reconnecting, receiving a new resource, 
the party having lost the presence subscription, will not be able to 
communicate efficiently with the entity any longer.

• Authorization



Authorization

• XMPP includes several authorization mechanisms that 
help protect entities in the network:

• Only properly authenticated clients are authorized to 
send messages to the network. 

• Only mutually authenticated brokers can participate in 
the federated network. 

• Brokers can only forward messages originating in their 
authenticated domain. 

• Information Queries require the use of Full JIDs, whose 
reception require mutual consent. 

• IEEE IoT Harmonization adds an authorization layer of 
decision support to this list.



Secure Registration

• To automate the installation and configuration of 
huge quantities of devices into the network, 
along the principles of zero-configuration 
networking for the operator, an automatic 
registration procedure is available. To prohibit 
malicious bots from being able to create 
identities fraudulently, requests must be 
identified using an API key and signed using a 
private key. API keys can be limited with regards 
to the number of accounts that can be created 
using it.

• On this broker, you can request an API key



Discovery
• During production, the manufacturer is only aware 

of the conceptual identity of the devices being 
manufactured. This identity can include information 
about serial number, make and model of device, 
information about manufacturer, etc., as well as a 
secret key. Typically, the manufacturer and the 
device are unaware of the network identity the 
device will have.

• After installation and during configuration, the 
device will find its broker, either through pre-
configuration, or through information available in the 
network, create its network identity. The device then 
registers itself with a Thing Registry available on the 
message broker. This registration contains the 
conceptual identity of the device, and its new 
network identity.

• The conceptual identity, known at the time of 
production, is transferred out-of-band to the owner 
of the device. This can be done using a QR-code 
(for instance) on a sticker or sharing a iotdisco URI. 
The owner sends a claim to the same Thing 
Registry. The registry matches registrations and 
claims, and if they match, pairs the thing with its 
owner, and informs each one about the network 
identity of the other.



Ownership
• Once each thing knows the network identity of its owner, it becomes 

possible to define ownership, not only of the thing, but also of the data it 
generates. Typically, in cloud-based solutions, data ownership is 
challenging, if not undefined.

• Mimicking how ownership of everyday physical objects is defined, or 
enforced, the infrastructure helps define a method of enforcing ownership of 
information:

• Local processing of information, together with Ubiquitous Encryption
protects it behind lock and key. 

• Thanks to the strong support for authorization, access to information is 
limited to only trusted parties. 

• Access is monitored, especially if data is made available through contracts. 
• Ownership of information can be demonstrated through annotations in the 

Thing Registry. 
• Ownership of information is enforced by utilising the decision support

provided by the infrastructure, together with edge computing principles, 
instead of relying on centralized processing in the cloud, except in cases 
when required or in accordance with the wishes of the owner.



Decision Support

• The infrastructure provides your things with decision support, 
helping them make security decisions in real time. This provisioning 
capability allows owners to control who can communicate with their 
devices and do what with them. It also reduces the responsibility of 
the manufacturer, who cannot possibly know beforehand for what 
purpose each device will be used.

• When something new happens to a thing, to which it does not know
how to react, it can ask the provisioning service in the broker what to 
do. Designed on the principles of data protection by default, the 
provisioning service will reject the petition if it does not know how to 
solve it. But it knows who its owner is, and therefore also, who
should know. An asynchronous message is sent to the owner, which
the owner can respond to when time is available. Once responded 
to, the provisioning service learns. The next time the thing asks a 
related question, the provisioning server knows how to respond. The 
service has been provisioned in accordance of the will of the owner, 
and with no impact on the infrastructure operator.



Contracts

• Owners can automate decision support by uploading 
digital contracts for their things. These contracts stipulate 
requirements that must be met in order to gain access to 
their devices, under what conditions access can be 
given, for how long and how often. Identified third parties 
wanting access to devices can accept their contracts and 
are automatically granted access in accordance with the 
contracts. Things report usage to the infrastructure, 
which uses this usage information to monitor compliance 
with the contract. This usage information is also used to 
create billing information or the Marketplace of Things 
and Data.



Ubiquitous Encryption

• Ubiquitous Encryption is a policy that 
requires that all client ⇔ broker 
connections (c2s), and all broker ⇔ broker 
(s2s) are encrypted and properly 
authenticated. This is one of many 
features that provide for added security. In 
cases where very sensitive information is 
communicated, End-to-end encryption 
(E2E) and/or Peer-to-Peer (P2P) 
communication can be used.



Security
• The extas.is Integration Server helps you maintain a high level of data 

protection by design and by default for your Smart City applications. It does 
so by providing:

• Strong global identities that identify all senders of messages in the network. 
While anonymous access might protect a whistle blower (or a criminal), 
strong authenticated identities protect the information owner. 

• Authentication of all participants in the network. 
• Authorization based on consent is required for full access to an entity. This 

consent can be verified, and as easily withdrawn, as it was given. 
• Federation provides for resilience and scalability. It allows you to divide the 

risk across domains. 
• Ownership and decision support provide long-term security for things that 

are not operated by humans. 
• Ubiquitous Encryption helps maintain the confidentiality of the information 

communicated.



Edge Computing

• Edge computing is the paradigm that information should be 
processed as close to the edge, or the source, as possible. It is the 
opposite of centralized (or cloud) processing. The extas.is 
Integration Server helps you realize the Edge Computing paradigm, 
by not participating actively in the processing of sensor data. 
extas.is only acts as a message broker, and furthermore provides
registry and decision support services for things. Sensor data is 
never collected by the broker. If an entity wants access to the data, it 
needs to request it from the thing directly, helped by the 
infrastructure to do so. If an infrastructure component should try to 
collect such information from things integrating with extas.is, their 
corresponding owners would be alerted, and data collection would
only be possible in instances where owners consent.



Privacy

• extas.is helps applications respect the privacy of 
any data subjects related to any sensitive 
information measured by devices connected to 
the broker. This is done on an infrastructure 
level, in several ways:

• Data protection principles are implemented by 
design and by default. 

• Access to data can only be achieved through 
consent from its owner. 

• Any consent given can be as easily withdrawn, 
as it was given.



Marketplace of Things and Data

• The law of supply and demand requires you to 
limit access to a resource for it to be valuable, 
i.e. having a price above zero. An unlimited 
resource has no price, or a price of zero. While 
the resource might have non-monetary values, 
such as emotional, philosophical or spiritual 
values, for it to have a monetary value, access 
to it must be restricted. This does not 
automatically mean any restricted resource has 
a value. But all valuable resources are restricted. 
And so, it is for information too: Only restricted 
information can be valuable.



Marketplace of Things and Data

• For this purpose, extas.is provides a 
marketplace of things and data, and helps 
owners restrict access to their things and their 
data. Owners publish their things in the Thing 
Registry where others can discover them. 
Through contracts, owners define the conditions 
required of acquiring access to their things. 
Accepting these contracts is done using a digital 
signature; a deal is made. The plurality of 
offerings available in the registry forms a 
marketplace of things and their data.



Economic Feedback

• The integration server provides billing 
information to the infrastructure operator, based 
on signed contracts and reported usage. The 
operator can use this information to bill the 
parties participating in the network, in 
accordance with their usage. A part of these 
earnings is used to reimburse the owners whose 
devices have been used. This creates an 
economic feedback, helping the owners to get a 
return on their investment.



Incentives to develop the 
Smart City

• The original question being solved by the proposed infrastructure is as 
follows: What incentive does an owner of a thing have for allowing others to 
connect to it and use it in their systems? In the vision of a Smart City, 
there’s ubiquitous access to things and services in all niches of society. But 
what incentives are there for this to occur?

• In a traditional IoT system there are few. Allowing third parties access to 
your things will only put more load on your devices, decreasing the 
performance of your system, while a competitor can publish a similar 
service as yours without having to invest in hardware. For this reason, most 
IoT solutions are closed systems prohibiting integration with their things 
directly, permitting access at most through controlled back-end server 
platforms using proprietary APIs. Integrations are therefore limited.

• Through the proposed infrastructure, there is a clear economic incentive to 
allow others access to your things. If you provide the type of device for 
which others are willing to pay to get access to, you might not only get a 
return on your investment, but also turn a profit. It will become profitable in 
its own right, to provide access to devices and their data and services. The 
marketplace will provide a platform for competition, which will accelerate 
development of the Smart City.



IPDX.NET 
Internet Protocol Data eXchange NETwork

• Safe IoT data sharing
• EU GDPR Compliant!



IPDX.NET

• IEEE GitLab Open Source Repository:

• https://gitlab.com/IEEE-SA/XMPPI/IoT

• Extasis Integration Server (EIS)

• https://extas.is

• IPDX.NET IoT Broker meets the GDPR 
(Global Data Protection Regulation) 
Compliance



IoT Broker
• The IoT Broker is a message broker that helps ensure things connected to the 

Internet has a secure, open and interoperable communication environment. It does 
this by:

• Using XMPP, providing things with a distributed, federated communication network 
that solves basic authentication and authorization. XMPP is very capable, and 
provides a standardized middleware layer for internet applications that require real-
time communication support. Using XMPP replaces the need for customized 
middleware with replaceable components. 

• Providing a Thing Registry for things to be securely claimed by their owners. The 
Thing Registry matches ownership claims to unclaimed devices, and informs 
matching pairs about the network identities of each other. Once claimed, a thing can 
be made public. They are allowed to publish their existence and capabilities, allowing 
consumers to find suitable things based on their capabilities. 

• Providing Decision support for things in a changing environment. This allows 
owners to determine who can access their things, what fields they are allowed to read 
and what parameters they are allowed to control. 

• Securing Account Creation for batches of things, to protect against malicious use 
and unwanted bots. 

• Using this IoT Broker allows you to create open, yet secure and interoperable 
applications for the Internet of Things. 



Why XMPP?
• The reasons for choosing XMPP for an IoT backbone are many. Here are some:
• XMPP is standardized by the Internet Engineering Task Force (IETF) in RFC 6120, RFC 6121 and RFC 6122. 
• XMPP is encrypted. 
• XMPP is battle tested and robust, with 19 years of operation. 
• XMPP is extensible. Anyone can extend it without being afraid the extensions will collide with other extensions. 
• XMPP has a series of standardized extensions, managed by the XMPP Standards Foundations - XSF. 
• XMPP is federated, meaning anyone can set up their own XMPP domain, extending the network without limiting 

performance of the rest of the network. Federation is the key to global scalability. 
• There’s a lot of available software for XMPP, including clients, servers and libraries in most languages. 
• XMPP supports both Human-to-Human (H2H), Human-to-Machine (H2M) and Machine-to-Machine (M2M) 

interfaces. 
• XMPP supports most important communication patterns, including: 

– Asynchronous messaging 
– Request/Respond 
– Publish/Subscribe 
– Multicast 
– Event subscription 

• XMPP is not sensitive to network topology in the same way as HTTP and CoAP. 
• XMPP is secure, in contrast to protocols such as MQTT which due to intrinsic vulnerabilities can never be made 

secure in an open and interoperable environment such as the Internet. 
• XMPP includes a global, distributed identity model, providing actors with their own unique global and authenticated 

identity. This makes distributed transactions and security decisions easier. Everybody knows the identity of each 
other.



XEP support by the IoT Broker

• e IoT Broker is an XMPP server dedicated to IoT-related applications. It has support for a specific set of protocols to 
achieve this. The following table lists what server-specific protocols are supported by 
the broker. (All client-side protocols are by their very nature automatically supported.)

• ProtocolTitleRFC-6120Extensible Messaging and Presence Protocol (XMPP): 
CoreRFC-6121Extensible Messaging and Presence Protocol (XMPP): Instant 
Messaging and PresenceRFC-7395An Extensible Messaging and Presence Protocol 
(XMPP) Sub protocol for WebSocketRFC-7590Use of Transport Layer Security (TLS) 
in the Extensible Messaging and Presence Protocol (XMPP)RFC-7622Extensible 
Messaging and Presence Protocol (XMPP): Address FormatXEP-0008IQ-Based 
AvatarsXEP-0030Service DiscoveryXEP-0049Private XML StorageXEP-0054vcard-
tempXEP-0059Result Set ManagementXEP-0060Publish-SubscribeXEP-
0065SOCKS5 BytestreamsXEP-0077In-Band RegistrationXEP-0092Software 
VersionXEP-0115Entity CapabilitiesXEP-0124Bidirectional-streams Over 
Synchronous HTTP (BOSH)XEP-0156Discovering Alternative XMPP Connection 
MethodsXEP-0160Best Practices for Handling Offline MessagesXEP-0163Personal 
Eventing ProtocolXEP-0178Best Practices for Use of SASL EXTERNAL with 
CertificatesXEP-0185Dialback Key Generation and ValidationXEP-0191Blocking 
CommandXEP-0199XMPP PingXEP-0202Entity TimeXEP-0203Delayed 
DeliveryXEP-0206XMPP Over BOSHXEP-0220Server DialbackXEP-
0288Bidirectional Server-to-Server ConnectionsXEP-0324Internet of Things -
ProvisioningXEP-0337Event Logging over XMPPXEP-0347Internet of Things -
DiscoveryXEP-0348Signing FormsXEP-0363HTTP File Upload



Questions?

Thank you!




